Efficient High-Speed WPA2 Brute Force Attacks
using Scalable Low-Cost FPGA Clustering

Markus Kammerstetter', Markus Muellner!, Daniel Burian®,

Christian Kudera®, and Wolfgang Kastner?

! Secure Systems Lab Vienna, Automation Systems Group, Institute of Computer
Aided Automation, Vienna University of Technology,
{mk, mmuellner, dburian, ckudera} @ seclab.tuwien.ac.at,
2 Automation Systems Group, Institute of Computer Aided Automation, Vienna
University of Technology,
{k} @ auto.tuwien.ac.at

Abstract. WPA2-Personal is widely used to protect Wi-Fi networks
against illicit access. While attackers typically use GPUs to speed up the
discovery of weak network passwords, attacking random passwords is
considered to quickly become infeasible with increasing password length.
Professional attackers may thus turn to commercial high-end FPGA-
based cluster solutions to significantly increase the speed of those attacks.
Well known manufacturers such as Elcomsoft have succeeded in creating
world’s fastest commercial FPGA-based WPA2 password recovery sys-
tem, but since they rely on high-performance FPGAs the costs of these
systems are well beyond the reach of amateurs. In this paper, we present
a highly optimized low-cost FPGA cluster-based WPA-2 Personal pass-
word recovery system that can not only achieve similar performance at
a cost affordable by amateurs, but in comparison our implementation
would also be more than 5 times as fast on the original hardware. Since
the currently fastest system is not only significantly slower but propri-
etary as well, we believe that we are the first to present the internals
of a highly optimized and fully pipelined FPGA WPA2 password re-
covery system. In addition, we evaluated our approach with respect to
performance and power usage and compare it to GPU-based systems.

Keywords: FPGA, WPA2, Security, Brute Force, Attacks

1 Introduction

Today’s Wi-Fi networks are commonly protected with the well known WPA2
protocol defined in the IEEE 802.11 standard documents [6]. The WPA2-Personal
variant is designed for smaller networks and uses a pre-shared key (i.e., a Wi-Fi
password) to derive the necessary key material for authentication, encryption
and integrity protection. The Wi-Fi password needs to be at least 8 charac-
ters long and the key material is mainly derived through the salted key deriva-
tion function PBKDF?2 [8] in combination with the SHA1 hashing algorithm [1]

in HMAC configuration [2]. Due to the computational complexity of the key
derivation function and the use of the Wi-Fi’s SSID as cryptographic salt, brute
force attacks are very hard to conduct in the presence of random passwords
with increasing length. Incurring significant costs well outside of what amateurs
can afford, professional attackers can turn to commercial high-end FPGA-based
cluster solutions achieving WPA-2 password guessing speeds of 1 million guesses
per second and more [10]. In this paper, we focus on the WPA2-Personal key
derivation function and low-cost FPGA cluster based attacks affordable by ama-
teurs. Especially considering second-hand FPGA boards that have been used for
cryptocurrency mining, those boards are now available at low cost and can be
repurposed to mount attacks on cryptographic systems. In the first part, we use
a top-down approach to present WPA2-Personal security at a high level and we
subsequently break it down to low-level SHA1 computations. In the second part,
we use a bottom-up approach to show how these computations can be addressed
in hardware with FPGAs and we present how our solution can be integrated
into a scalable low-cost system to conduct WPA-2 Personal brute force attacks.
We evaluate our system with respect to performance and power usage and we
compare it to results we obtained from GPUs. The extended version of our pa-
per [9] also includes a real-world case study highlighting the practical impact.
Specifically, the contributions presented in this paper are as follows:

— We present a highly optimized design of a scalable and fully pipelined FPGA
implementation for efficient WPA2 brute force attacks that brings the per-
formance of today’s highly expensive professional systems to the low-cost
FPGA boards affordable by amateurs.

— Our implementation on Kintex-7 devices indicates that on the same hard-
ware, our implementation is more than 5 times as fast in comparison to what
is currently marketed to be world’s fastest FPGA-based WPA2 password re-
covery system [4, 10].

— We implemented and evaluated our approach on three different low-cost
FPGA architectures including an actual FPGA cluster with 36 Spartan 6
LX150T devices located on repurposed cryptocurrency mining boards.

— We evaluate our system with respect to the power consumption and per-
formance in comparison to GPU clusters, showing that FPGAs can achieve
comparable or higher performance with considerably less power and space
requirements.

2 Related Work

Since WPA2 is commonly used, there are several publications and projects deal-
ing with WPA2 security and brute force attacks in particular. For instance in
[11], Visan covers typical CPU and GPU accelerated password recovery ap-
proaches with state-of-the-art tools like aircrack-ng® or Pyrit?. He considers

3 http://www.aircrack-ng.org * https://code.google.com/p/pyrit

a time-memory tradeoff usable for frequent Wi-Fi SSIDs and provides a per-
formance overview of common GPUs and GPU cluster configurations. In that
respect, oclHashcat® and the commercial Wireless Security Auditor software®
need to be mentioned which are both password recovery frameworks with GPU
acceleration and WPA2 support. Unlike these GPU-based approaches, our sys-
tem comprises of a highly optimized and scalable FPGA implementation allow-
ing higher performance at lower costs and power consumption in comparison.
In [7], Johnson et al. present an FPGA architecture for the recovery of WPA and
WPA2 keys. Although WPA support is mentioned, their implementation seems
to support WPA2 only which is comparable to our system. However, while our
implementation features multiple fully pipelined and heavily optimized cores for
maximum performance, Johnson et al. present a straight-forward and mostly se-
quential design leading to a significantly less performance in comparison. In [5],
Giineysu et al. present the RIVYERA and COPACOBANA high-performance
FPGA cluster systems for cryptanalysis. They provide details on exhaustive key
search attacks for cryptographic algorithms such as DES, Hitag2 or Keeloq and
have a larger cluster configuration than we had available for our tests. Yet, in
contrast to our work, they do not cover WPA2 or exhaustive key search attacks
on WPA2 in their work. As a result, it would be highly interesting to evaluate
our FPGA implementation on their machines. Finally, Elcomsoft’s commercial
Distributed Password Recovery” software needs to be mentioned due to its sup-
port for WPA2 key recovery attacks on FPGA clusters [4, 10] and its claim to
be world’s fastest FPGA-based password cracking solution [3]. Although there is
practically no publicly available information on the internals of their WPA2 im-
plementation, in [10] performance data are provided. In contrast to their work,
we do not only disclose our design, architecture and optimizations of our FPGA
implementation, but we also claim that on the same professional FPGA hard-
ware our implementation would be more than 5 times as fast. In comparison to
the professional system, our system can achieve similar speeds on the low-cost
repurposed cryptocurrently mining hardware available to amateurs.

3 WPA2-Personal Handshake and Key Derivation

In WPA2-Personal, Station and Access Point (AP) mutually authenticate against
each other with the 4-way handshake depicted in Fig. 1a. To start the mutual au-
thentication process, the AP generates a 32 byte random ANonce and sends it to
the Station. Similarly, the Station generates a 32 byte random SNonce and uses
both nonces as well as the password to derive the PMK (Pairwise Master Key)
and the Pairwise Transient Key (PTK) with the help of the WPA2-Personal key
derivation (Fig. 1b). The nonces ensure that the handshake cannot by replayed
by an attacker at a later time. Afterwards, the Station sends the SNonce back
to the AP and utilizes the PTK truncated to the first 128 bits (Key Confirmation

5 http://hashcat.net/oclhashcat
S https://www.elcomsoft.com/ewsa.html
" https://wuw.elcomsoft.com/edpr.html

Key - KCK) to compute a Message Integrity Code (MIC) over the packet data.
At this point, the AP can compare the received MIC with the computed one
to validate that the Station is authentic and has knowledge of the password.
To prove to the Station that the AP knows the password, the Station sends a
message including ANonce and the corresponding MIC code. Since the Station
can only compute the correct MIC code if it knows the PTK, the AP can use this
information for authentication. On success, the Station completes the handshake
by sending a usually empty, but signed (MIC) message back to the AP.

generate generate
ANonce SNonce
PBKDF2
ANonce
———fNonce
derive PMK
PTK
Amac, ANonce
SNonce,MIC Smac, SNonce PRF-128
/)
derive KCK
PTK
ANonce,MIC Packet Data HMAC-SHA1
MIC
M
(a) 4-Way Handshake (b) Key Derivation

Fig. 1: WPA2-Personal Handshake and Key Derivation

During key derivation (Fig. 1b), PMK is computed from the password and the
SSID as cryptographic salt through the PBKDF2 [8] key derivation function with
HMAC-SHAL1 at its core. The PTK and its truncated variant denoted KCK are
computed through the HMAC-SHAT1 based pseudo random function PRF-128.
Likewise, also the computation of the MIC integrity code relies on HMAC-SHAL.

3.1 Breaking it down to SHA1 Computations

Internally, the PBKDF2 key derivation function employed in WPA2-Personal
utilizes 4,096 HMAC-SHA1 iterations to obtain 160 bit hash outputs (Fig.
2). Since the WPA2 Pairwise Master Key PMK needs to be 256 bits long, two
PBKDEF2 rounds are necessary. Their output is concatenated, but from the sec-
ond iteration the output is truncated to 96 bits to achieve a 256 bit result. In
both PBKDF2 iterations the password is used as key while the SSID of the
Wi-Fi network concatenated with a 32 bit counter value serves as input. In the
first iteration, the counter value is one while in the second iteration it is two.
Consequently within both PBKDF?2 iterations, there are 8,192 HMAC-SHA1
iterations required to compute the PMK. In the first PBKDF2 round the xor-
transformation is applied on the password and the inner pad ipad. The result
is a 512 bit block serving as input to the SHA1 hash function in initial state. The
output is the HMAC inner state. Since the SSID may be no longer than 32 bytes,

the hashing of the SSID and the PBKDF2 round counter can be done together
with the SHA1 finalization so that only one SHA1 iteration is necessary.

(HMAC-SHA1(m, k))

k ipad | k opad
® [0x36363636 .. | @ [Ox5c5c5c5¢ ... |

\ sHA1/ \ sHA1/
ey ey

MAC

Fig.2: PBKDF2 core with SHA1 rounds in HMAC construction

In the next step, the outer HMAC state is computed by hashing the xor of the
password and the outer pad opad. Afterwards, the previously finalized 160 bit
digest is hashed and finalized with the outer state. At this point the MAC is
ready. The second PBKDF2 iteration is computed in the same way with the
difference that the round counter value is set to two instead of one. Since the
password does not change during PBKDF?2 iterations, the inner and outer HMAC
states stay the same allowing us to use cached states instead of having to compute
the states again. With that optimization in mind, it is required to compute at
least 2 + 4,096 x 2 SHA1 iterations for the first PBKDF2 round and 4,096 * 2
SHAT1 iterations for the second round (i.e., 16,386 SHA1 iterations in total) to
obtain the PMK. This computational effort, the use of the SSID as salt for key
derivation and the security of the innermost SHA1 cryptographic hash function
are the main reasons why WPA2-Personal key derivation is very strong against
typical exhaustive key search attacks. Once the PMK is available, the KCK is
derived by applying a 128 bit Pseudo Random Function (PRF). Internally, it just
uses HMAC-SHA1 again with the PMK as key. The hashed message is made up of
the string “Pairwise key expansion”, a terminating zero byte, an arithmetically
sorted tuple of the AP and Station addresses as well as another sorted tuple of
their nonces (i.e., ANonce and SNonce) including a finalizing zero byte. The
PTK is the resulting MAC and it is truncated to the first 128 bits to obtain the
KCK. If the PMK is available, the computation of the KCK takes 5 SHA1 iterations
as due to the length of the PMK the finalization of the inner HMAC state can not
be combined with the hashing of the PMK. Whenever AP or Station would like to
compute a MIC, they can do so by utilizing HMAC-SHA1 on the message with
KCK as key. The result of the computation truncated to the first 128 bits is the
MIC. The computational effort depends on the length of the message. However,
considering the messages from the 4-way WPA2-Personal handshake, a total of
5 SHAL1 iterations is required to compute the MIC since, similar to the KCK
computation, the finalization of the inner HMAC state requires one additional
iteration. A more detailed description of the key derivation is available in the
extended version of our paper [9)].

3.2 Attacking the 4-Way Handshake

If an attacker wants to determine the WPA2-Personal password, a 4-way WPA2-
Personal handshake between a Station and AP needs to be obtained first. This
can either be done passively or with the help of an active de-authentication
attack where the attacker spoofs the source address of the AP and sends de-
authentication frames to the Station. Since those frames are not authenticated,
the Station will falsely believe that the de-authentication request came from
the genuine AP and will follow the request. However at a later time, it will re-
authentication and thus give the attacker the opportunity to intercept the hand-
shake. As soon as the attacker has the handshake, passwords can be guessed
offline by deriving the key material for the PMK and the KCK and computing the
MIC for one of the observed packets in the handshake. If the observed MIC is the
same as the computed MIC for a password candidate, the attacker has found the
correct password for the network. However, since a WPA2-Personal password
needs to have a minimum length of 8 characters and for each password candi-
date a total of at least 16,386 + 5+ 5 = 16,396 SHA1 iterations are necessary
to compute the corresponding MIC over a handshake packet, exhaustive pass-
word guessing attacks are considered to be increasingly infeasible with higher
password complexity and length. In the subsequent chapters, we show that the
high computational effort can be addressed with special purpose FPGA hard-
ware so that a high number of real-world WPA2-Personal protected networks
with random passwords can be broken within days.

4 FPGA Implementation

Assuming familiarity with FPGA design in general, SHA1 [12] is especially well
suited for FPGA implementation due to the following reasons:

1. The algorithm has practically no memory requirements.

2. The rotate and shift operations utilized in SHA1 can be realized through
FPGA interconnects with minimal time delay.

3. Algebraic logic functions (xor, and, or, not, etc.) require minimal effort and
can efficiently utilize the FPGAs LUTs.

The most expensive operation are SHA1’s additions due to the long carry chain
between the adders. To implement the algorithm, a surrounding state machine
is required to control which inputs should be supplied to the logic in different
rounds. Considering that SHA1 has 80 rounds and we would like to achieve
maximum performance, there are two design options: Either the SHA1 algorithm
is implemented sequentially or in a fully pipelined way. The advantage of a
sequential implementation is that the FPGA can be completely filled up with
relatively small SHA1 cores. However, the disadvantage is that each of those
cores would require its own state machine which takes up a significant amount
of space. In comparison, a fully pipelined implementation does not require an
internal state machine as each of the SHA1 rounds is implemented in its own

logic block. While this is a significant advantage enabling parallel processing,
the drawback is that a fully pipelined implementation has much higher space
and routing requirements. When using multiple cores (each containing a full
pipeline), only an integer number of cores can be placed so that a significant
amount of unused space might be left on the FPGA. In our implementation, we
also experimented with filling up this space with sequential cores but refrained
from it due to the negative effect on the overall design complexity and the
lower achievable clock speeds. Due to the typically higher performance that can
be achieved through pipelining and the property that we get one full SHA1
computation output per clock cycle per core, we targeted a heavily optimized
and fully-pipelined approach. However, while pipelining alone has a considerable
performance impact in comparison to a sequential approach, the key of obtaining
maximum design performance are the optimizations. Our overall FPGA design
is illustrated in Fig. 3 and has the following components: A global brute force
search state machine, a shared password generator and an FPGA device specific
number of brute force cores, each comprising a WPA2-Personal state machine
with password verifier and a SHA1 pipeline.

Global Brute Force State Machine The task of the global brute force state
machine is to constantly supply all brute force cores with new password candi-
dates and check whether one of them found the correct password. Due to the
insignificant speed impact and the advantage of lower design complexity we chose
an iterative approach. Since our SHA1 pipeline comprises of 83 stages, we can
concurrently test 83 passwords per brute force core. With our iterative approach,
we enable the password generator and consecutively fill all brute force cores with
passwords. Once all cores have been filled, the password generator is paused and
we iteratively wait until all cores have completed. At that point, the password
filling process is restarted. If a core finds the correct password or the password
generator has reached the last password, the state machine jumps into the idle
state and can accept the next working block. The penalty for this iterative ap-
proach is 83 clock cycles per core since once a brute force core has finished, we
could immediately fill it with a new password. However, in comparison to the
long run time of each core the impact is insignificant.

Password Generator The password generator (Fig. 3b) is realized as a fast
counter. Whenever the FPGA is idle, it can accept a new working block compris-
ing of all necessary data including the actual start password (start_password)
and how many passwords (n) should be tested. Initially starting at the start pass-
word, whenever the password generator is enabled (enable) it will output a new
password (current_password) and the current password number (count) in
each clock cycle. In case no more passwords can be fed into the brute force cores,
the generator can be paused at any time by disabling the enable input. Ulti-
mately, it will output new passwords until n passwords have been reached and
assert the done signal to indicate that all passwords within the current working
block have been generated.

State Machine [\

N
WPA2 Password Verifier =

5 -

g SHA-1 Pipeline —clk Count[32] —
c

I —{reset done —
el

g —|enable

% —|start_password[64]

- 80 Rounds —n[32] current_password[64] [~
N —,_I —

(a) FPGA Global State Machine (b) Password Generator

Fig.3: FPGA Global State Machine and Password Generator Block

During the optimizations of our cryptographic cores in the design, at some point
the long carry chain in the password counter became the clock speed limiting
critical path. We were able to address the issue by parallelizing the counter and
implementing the password carry with static multiplexers outside the sequential
logic block. The sequential logic block can be seen as typical register transfer logic
(RTL). With the clock signal, the old counter value is fetched from the source
register, increased and finally output to the destination register. The path in be-
tween accounts for the delay. Since we need to have a carry overflow at the last
valid password character (e.g., 'Z’) we need a set of multiplexers that eventually
reset the characters at each position of the password string. However, if this
multiplexer based reset logic is within the sequential path it will also increase
the time delay. By statically implementing the reset logic outside this sequential
path we were able to balance the overall worst-case delays and achieved a pass-
word counter implementation that no longer accounted for the critical path in
our overall design. Another password generator optimization approach we con-
sidered is utilizing multiple clock domains. The general idea is that the overall
design naturally spends most of its time computing SHA1 iterations. At that
time the password generator is disabled. We could thus use a less critical slower
clock to generate the passwords and output them to clock synchronizing FIFO
buffers directly placed next to the input of the SHA1 pipelines. As soon as a
SHA1 pipeline requires a new password input, it can utilize its fast clock to drain
the FIFO buffer which would in turn enable the password generator to refill the
corresponding buffer at its slower clock. The advantages of this approach would
be the following: First, the complexity of the password generator design can be
further increased without negatively impacting the critical path. Second, the big
advantage is the routing of the bus signals from the password generator to all
the cores. Considering that the password generator is located at the center of the
design and the passwords need to be distributed across the entire FPGA to all

brute force cores, there is a significant impact on the time-driven routing com-
plexity and the interconnect delays that negatively impact the maximum clock
speed of the overall design. By leveraging a slower clock, the passwords would be
already located in the FIFO buffers next to the SHA1 pipelines of each core but
they could still be read with the fast clock the SHA1 pipelines are operating on.
However, since with our previously mentioned password generator optimization
the critical path was no longer within the password generator domain, we did
not implemented the approach. It will be covered in future work.

WPA2-Personal State Machine with Password Verifier Each brute force
core has a WPA-2 Personal state machine with a password verifier. It is the most
complex state machine in the overall design. Its task is to compute the MIC code
for each password candidate with the help of the SHA1 pipeline in its center.
Each computed MIC is compared with the MIC from the WPA2-Personal 4-way
handshake to determine whether the password candidate was correct or not.
Figure 4 shows all necessary states and state transitions.

PMK PTK MIC

Iterate

@ ®

Fig. 4: WPA2-Personal FPGA States

The state machine is divided into three WPA2-Personal key derivation phases:
PMK computation (1), PTK computation (2), and MIC computation (3). The
computation of the PMK has the highest computation effort due to the 2 PBKDF2
rounds with 4,096 iterations requiring 16,386 SHAT1 iterations in total. Ini-
tially, 83 password candidates and the network’s SSID are fed into the SHA1
pipeline to compute the corresponding HMAC outer and inner states (OState
and IState). Since these states do not change over the PBKDF2 iterations,
the HMAC state computation needs to be done only once. In the first PBKDF2
round, the SSID and the PBKDF2 round counter with value 1 are used as salt.
After that, there are 4,095 more iterations in which the digest output is used as
input. At that point, the second PBKDF2 round is computed by first computing
the salt with an increased round counter value (2) and subsequently performing
4,095 iterations to obtain the PMK.

SHA1 Pipeline In each brute force core, the SHA1 pipeline occupies a large
amount of space due to the high number of pipeline stages. While SHA1 has 80
rounds and a fully pipelined implementation would thus have an equal number

of pipeline stages, we heavily optimized our pipeline to allow higher clock fre-
quencies and consequently achieve more performance. The SHA1 pipeline is the
key limiting factor of how fast our password guessing attacks can be conducted.
Within the brute force cores, each of our SHA1 pipelines has 83 stages due to
the optimizations we performed. Each core can thus compute 83 password can-
didates in parallel. The optimization approaches we applied are described in the
following.

The first stage of the SHA1 pipeline is a buffer stage so that the delays of the
different input logic blocks within the WPA-2 Personal state machine are not
added to the pipeline’s input logic and thereby do not increase the overall time
delay of the critical path. The second stage denoted ’Initiate’ is an optimization
of the 4 required (expensive) additions in each SHA1 round. Instead of having
all 4 additions in one stage, the structure of the SHA1 algorithm allows us to
split up the required 4 sequential additions into two rounds with 2 additions
each, thereby significantly improving the maximum clock speed. Since the SHA1
expansion steps require only a small amount of logic, another optimization is to
do multiple message expansion steps in a single pipeline stage so that it is not
needed in the following few stages. As a result, the source data is not accessed in
each stage and shift register inference is boosted causing lower flip-flop fan-out
as well as less power usage and lower area requirements. Another approach we
took is the pipeline stage denoted 'Add’ after the SHA1 rounds. After the last
SHA1 round, the resulting digest is added either to the constant initialization
vector (first iteration) or to the previous digest for subsequent iterations. Due to
these expensive additions, the design performance can be improved if they are
carried out in a separate pipeline stage. Instead of forwarding the initial digest
through all stages to the final addition stage, we leverage a FIFO-based delay line
utilizing the FPGAs Block-RAM resources. This avoids excessive interconnect
routing through all stages and thus makes the design smaller, reduces the number
of critical paths and allows us to achieve higher clock frequencies more easily.

Additional FPGA Design Optimizations In the WPA2-Personal state ma-
chine, we directly use the output from the password generator and compute
the HMAC OState state first. At the same time, we store the password can-
didates in a Block-RAM buffer for later IState computation. After that, we
no longer work with the passwords but use password offsets instead. The re-
sult is a lower design density as no more additional interconnects are required
for the password in later stages. A similar approach is used to avoid excessive
interconnects and design density. Instead of having large buses, we either use
Block-RAMs directly or form RAM-based delay lines to keep the IState and
OState states as well as the computed PMKs and PTKs in memory. Instead of
one large WPA2-Personal state multiplexer directly controlling all SHA1 pipeline
inputs and outputs, we make use of several smaller and less complex multiplex-
ers. Once again, this reduces overall design complexity and allows us to achieve
higher clock speeds more easily. The top-level design needs to communicate with
the outside world. Each time a new working block is added, all necessary Wi-Fi

10

and WPA2-Personal data needs to be transferred and subsequently forwarded
to all brute force cores. The result is a very broad bus spreading all over the
FPGA design and causing severe design congestion. Since in our design only the
password candidates and the SSID are required early within the WPA2-Personal
state machine, we transfer the rest of the data over a small 16 bit bus leveraging
inferred shift registers. This significantly reduces the complexity of the intercon-
nects between the shared global state machine and the brute force cores across
the FPGA. To lower the amount of input and output data exchanged with the
outside world, we use a minimized Wi-Fi and WPA2-Personal data set that only
includes the variable data fields from the captured handshake. All other data
is not only fixed within the FPGA, but also kept locally in the cores. In ad-
dition, the FPGA does not output the correct password, but a numeric offset
from the start password instead. To avoid design congestion and to push the
design to the highest clock speed possible, we make use of custom parameters
within the Xilinx design tools for synthesis, mapping and routing such as the
minimum inferred shift register size, register balancing or the number of cost
tables. In addition, we use floor planning to support the mapper, placer and
router in achieving higher clock rates. Floor planning is important to place crit-
ical components requiring a fast interconnect in between next to each other. In
general, we were able to obtain the highest speed improvements by utilizing a
star like topography: The password generator is distributed over the very center
of the FPGA and the brute force cores are surrounding it. In addition we also
used floor planning to avoid the placement of time critical components in FPGA
areas that are hard to reach through interconnects. Consequently, we carefully
placed critical components like the SHA1 pipelines in a way that those regions
do not negatively impact the routing delay. In our FPGA implementations, we
use a slow clock for communication with the outside world and a fast clock for
computation at the same time. In our Spartan-6 implementation, the speed of
the fast clock can be adjusted dynamically during runtime by programming the
clock multiplier. In contrast, our Artix-7 implementation includes an automatic
clock scaling mechanism to adjust the fast clock frequency with the device core
temperature. Both approaches allow the FPGA design to run at high speeds
without the danger of overheating.

4.1 Overall System Design

Targeting FPGAs well in the range of amateurs, we implemented and practi-
cally evaluated our system on Xilinx Spartan-6 and Xilinx Artix-7 FPGAs. The
Spartan-6 FPGAs are located on low-cost repurposed cryptocurrency mining
boards. For comparison purposes, we created a full implementation for the more
expensive Xilinx Kintex-7 XC7K410T FPGAs utilized in Elcomsoft’s system as
well, but could not practically test it since we did not have one of these FPGAs
at hand. The overall system design for the Spartan-6 FPGAs is visible in Fig. 5

11

and based on ZTEX FPGA boards®. The Artix-7 design is similar but has only
one XC7A200T FPGA on the board.

Host-PC l\

USB-FPGA Module 1.15y

FPGA 1 FPGA 2
XC6SLX150 XC6SLX150
| |
| 1
FPGA 3 FPGA 4
XC6SLX150 XC6SLX150

USB-Hub

<
s &
°
=
s &
5
s>
N
)
1I.IJ

Fig.5: System Overview (Spartan 6 System)

The system comprises of a PC with a host software and several FPGA boards
connected via the USB 2.0 high-speed interface. Each FPGA board has a fast EZ-
USB FX2 micro-controller with custom firmware to interface with the FPGAs.
Our custom host software utilizes the ZTEX SDK to allow easy communication
with the micro-controller and the FPGAs. The host software accepts a config-
uration file that includes all necessary Wi-Fi and WPA-2 Personal handshake
data. At startup, it enumerates all connected FPGA boards, uploads the micro-
controller firmware if necessary and configures the FPGAs with our bit stream.
The software makes use of several threads. Apart from the main program, there
is a thread to generate password working blocks for the FPGAs and additional
threads for each FPGA board. The password working blocks are kept in a pool
with constant size. The device threads can supply working blocks to FPGAs and
mark them as being processed. If an FPGA has finished a block, it is removed
from the pool and the generator automatically creates a new working block. If
for some reason an FPGA fails, the block sent to the FPGA is still in the pool
and just needs to be unmarked so that the next free FPGA can process it in-
stead. The micro-controller firmware is responsible for USB communication with
the host and communication with the FPGAs.

5 Evaluation

We performed multiple evaluations with regard to our design performance, the
power usage and performance in comparison to GPUs. We evaluated the perfor-
mance and the power usage of our design on multiple FPGAs and FPGA boards.
The first FPGA we targeted was a Spartan-6 XC6SLX150T-3 device. Four of
these FPGAs can be found on the Ztex 1.15y board visible on the left of Figure
6. The second FPGA we used for our evaluation was an Artix-7 XC7A200T-2 de-
vice on the Ztex 2.16 board visible on the right of the picture. For both FPGAs,

8 http://www.ztex.de

12

we created an optimized implementation and a configuration bit stream that can
be uploaded to the device. The main difference between the bit streams is the
FPGA type, the maximum clock frequency and most importantly the number
of brute force cores we were able to fit onto the device.

Fig. 6: Ztex 1.15y Board (left), Ztex 2.16 Board (right)

To evaluate the performance and the power requirements, we used the obtained
timing and power reports by utilizing the Xilinx timing and power analysis tools.
In addition to these results, we conducted practical measurements on the FPGA
boards. At first, we measured the idle wattage of each unconfigured board at
the power supply to determine the idle power usage. In the next step, we used a
generated WPA2-Personal handshake with our software to mount a brute force
attack on each of our FPGA boards. We used large password working packages
resulting in a 30 seconds runtime per FPGA to avoid I/O bottlenecks. By mea-
suring the wattage again during operation, we were able to determine the overall
power consumption. To reduce the influence of the power consumption caused by
losses in the power supplies or components other than the FPGA, we obtained
the power consumption of our FPGA implementation through the difference be-
tween the overall idle consumption and the consumption during operation. In
Section 5.1, we use the same method to determine the power consumption of
GPUs to get results that can be compared to the FPGA power consumption.
To obtain brute force performance measurements as well, we let each system
run for at least 1 hour and computed the performance by measuring the num-
ber of password guesses during that time. The result is the average number of
password guesses per second. In addition to these evaluations, we executed the
implementation on our FPGA cluster with 36 Spartan-6 XC6SLX150T FPGAs
located on 9 Ztex 1.15y FPGA boards. The cluster setup allowed us to perform
measurements on a larger setup and to determine how well our design scales
with an increasing number of FPGAs. Using the power and performance mea-
suring methodology from above, we obtained measurement results for the cluster
as well. To allow comparison with the commercial Elcomsoft password recovery
system [4, 10], we created an implementation and a configuration bitstream for
the more expensive Kintex-7 XC7K410T-3 devices as well. However, since we did
not have a board with this type of Kintex-7 FPGA, we can provide the Xilinx
development tool’s timing and power analysis results only.

13

5.1 GPU Comparison

To measure performance and power requirements of GPUs, we utilized cuda-
Hashcat? v1.36 to mount brute force attacks on the same WPA2-Personal hand-
shake we used previously to test our FPGA implementations. We executed the
tool on machines with different Nvidia GPUs (GeForce GTX 750 Ti, GeForce
GTXT770 Windforce OC, GRID K520) and measured the performance in pass-
words per second as well as the power consumption. We applied the same power
measurement methodology as during our FPGA evaluation. For the Amazon
EC2 GPU cloud machines with GRID K520 GPUs, we were unable to obtain
power measurements. The specific machine configurations and results are de-
scribed in detail in Section 6.

6 Results and Discussion

System FPGAs Type| Cost|Cores| Tool W|Tool MHz|Meas. W|Act. MHz|calc pwd/s| pwd/s|pwd/s W
Ztex 1.15y 1{XC6SLX150T-3 175 2 4.281 187 6.99% 180 21,956(21,871 3,128*
Ztex 1.15y 4/XC6SLX150T-3 700 8| 17.124 187 27.96 180 87,826 87,461 3,128
9x Ztex 1.15y 36|XC6SLX150T-3| 2,400 72| 154.116 187 254 180 790,436|741,200 2,918
Ztex 2.16 1| XC7A200T-2 213 8| 10.458 180 11.04 180 87,826 87,737 7,947
N/A 1| XCT7K410T-3| 2,248 16 25.634 216 N/A N/A 210,783 N/A N/A
N/A 48| XCTK410T-3|107,904| 768|1,230.432 216 N/A N/A|10,117,584 N/A N/A

Table 1: Performance and Power Results of our Implementations for different
FPGA Devices and Systems/Boards

The results for our FPGA performance and power evaluation are visible in Table
1. In the System and FPGA column the table shows on which systems we con-
ducted our tests and how many FPGAs there are on the corresponding board
and/or in the overall system. The FPGA device types are visible in the Type
column whereat the name before the hyphen is the Xilinx device name and the
number after the hyphen indicates the device speed grade (the higher the bet-
ter). The Cost column provides an approximate cost estimate per FPGA in
US$ we obtained by looking up the devices at common Xilinx distributors such
as Digi-key!?. However while the cost for 9 new Ztex 1.15y would be appox-
imately 6,300 US$, we considered our 9 second-hand Ztex 1.15y boards pre-
viously used for cryptocurrency mining instead. We were able to obtain these
boards for 2,400 US$ which we believe is what amateurs could do as well, de-
pending on how much boards they would like to acquire and how much they
are willing to spend. The Cores column shows how many cores we were able to
fit onto the device to achieve maximum performance. While more cores per de-
vice generally increase the performance, it can also cause the maximum clocking
speed to drop significantly due to mapping, placement and routing issues. The
table presents the implementations allowing us to achieve the maximum per-
formance per device. The Tool W and Tool MHz columns present the design

9 http://hashcat.net/oclhashcat '° http://www.digikey.com

14

tool’s power and timing analysis results. For the Spartan-6 FPGAs, we used
the Xilinx ISE Suite 14.7 whereas for the newer 7-series devices Artix-7 and
Kintex-7, we used Vivado Design Suite 2015.1. In general, it appeared that the
newer Vivado tools produced better results, but since it doesn’t support older
model 6-series devices, we were unable to use it for our Spartan-6 implementa-
tions. The Meas. W and Act. MHz columns present the results for the power
measurements we conducted on the FPGA boards/systems and the actual clock
speed we used to run the devices. The calc pwd/s and pwd/s columns provide
the WPA2-Personal performance in passwords per second whereas the first one
indicates the calculated and theoretic maximum performance of our implemen-
tation whereas the latter one shows the actual measured average performance
per board and/or system. In the last column pwd/s W, we use our actual power
and performance measurements to determine how much brute force speed can be
achieved per Watt which is especially important when scaling up our implemen-
tation to larger FPGA cluster systems. In the following, we discuss the results
of our implementations on a per-device basis.

Spartan-6 Results We used the Xilinx Spartan-6 XC6SLX150T-3 FPGA
as the target for our first implementation due to the availability of a high-
performance FPGA cluster with 36 of these devices at our lab. The implemen-
tation on the Spartan-6 turned out to be especially challenging for multiple
reasons. We had to deal with long design tool runs (3 hours of more) each time
we made modifications to the design. Since the effects of many of our optimiza-
tions could not be tested through simulations alone, the duration of the design
tool runs significantly slowed down the development. In addition, the internal
switch boxes and types of slices in the Spartan-6 architecture are not well suited
for more complex and larger implementations in comparison to newer 7-series
devices. An important factor to achieve routable designs was our use of FPGA
floor planning. Our optimized 2 core implementation visible in Fig. 7a is able to
run at up to 187 MHz leading to the highest performance we were able to achieve
on this device. The picture shows the ready-to-upload placed and routed design.
On the left and right the 2 brute force cores are clearly visible. In between the
password generator and the global state machine are located. Although the dark
areas indicate that there would be sufficient space for an additional core, our
experiments showed that this would lead to lower performance due design con-
gestion. The first 3 rows in Table 1 present the results we obtained through this
implementation. Due to cooling requirements, we ran the design with a reduced
clock speed of 180 MHz. Our measurements indicate that in this configuration,
our implementation requires a total of 27.96W for all 4 FPGAs on the Ztex
1.15y board. The power measurements per Spartan-6 FPGA are marked with
an asterisk to indicate that we were unable to measure them directly, but rather
derived the measurement results from our power measurements for the entire
Ztex 1.15y board with its 4 FPGAs. Our results show that our approach scales
well and can be easily run in a cluster configuration producing a performance
of 790,436 password guesses per second on our cluster. The difference between

15

the calculated maximum performance and the measured performance is mainly
due to the I/O times between the PC, the microcontroller and the FPGAs. In
addition, our Spartan-6 implementation includes a dynamic frequency scaling
mechanism slowing down the FPGAs in case of device temperatures getting too
high. With better cooling inside the cluster, we believe that the gap between the
theoretic performance and the measured performance could be made smaller.

(a) XC6SLX150T (b) XC7A200T (¢c) XCTK410T
Fig. 7: Placed and Routed FPGA Designs

Artix-7 Results Starting from our already highly optimized Spartan-6 design
we ported our implementation to the newer 7-series Artix-7 XC7A200T-2 FPGA.
Since device internals such as the clocks or PLLs are different from the Spartan-
6 architecture, we had to adapt our implementation accordingly. The ability to
read the device’s core temperature from within the FPGA implementation was
especially interesting. It allowed us to implement frequency scaling mechanisms
directly on the FPGA not only preventing possible damage due to overheating,
but also ensuring that each device always runs at the maximum performance
possible. Our ready-to-upload placed and routed design is visible in Fig. 7b.
Through floorplaning all of the cores have a small path to the center where
the small block with the global state machine and the password generator are
located. The implementation can be run at up to 180 MHz to achieve a theoretic
maximum of 87, 826 password guesses per second. With a measured performance
of 87, 737 password guesses per second, our results show that a single XC7A200T-
2 device achieves not only more performance than 4 of the older model Spartan-6
XC6SLX150T-3 FPGAs altogether, but it also requires just 11.04 Watt during
operation.

Kintex-7 Results In contrast to the low-cost Artix-7 FPGAs, Kintex-7 FP-
GAs are larger and allow higher performance but are also significantly more
expensive. Although we didn’t have any of those FPGAs at hand, we created
an implementation for the Kintex-7 XC7K410T FPGA for two reasons. First,
Elcomsoft’s marketed to be world’s fastest FPGA-based WPA2 password recov-
ery system relies on these FPGAs just the same and even provides performance
figures for it [10]. Our targeting of the same FPGAs thus allows direct per-
formance comparison between their implementation and ours. Their document
indicates that on the PicoComputing SC5/M505-48 cluster with 48 XC7K410T
FPGAs their implementation is able to produce 1,988,360 passwords guesses
per second [10]. Assuming that their implementation targets WPA2 employing

16

SHAT1 instead of WPA1 employing the much less complex MD5 algorithm, our
implementation could achieve up to 10,117,584 passwords per second on the
same hardware and would thus be more than 5 times as fast. Second, we wanted
to obtain performance data for larger FPGAs as well. Although expensive, we
believe that Kintex-7 FPGAs are well in the price range for professional attack-
ers allowing them to achieve significantly more brute force attack performance
per FPGA in comparison to low-cost FPGAs such as the Artix-7. Our ready-
to-upload placed and routed design is visible in Fig. 7c. It comprises 16 cores
running at up to 216 MHz. Similar to our Artix-7 implementation, the password
generator and the global state machine are located in the center. At the same
time, the image suggests that with an increasing number of cores, the centralized
state machine and password generator becomes a bottleneck due to the long bus
interconnects reaching to the outside cores. We believe that this problem could
be easily addressed by including FIFOs for the password candidates in each of
the brute force cores.

6.1 GPU Results and Comparison

The results of our GPU evaluation (Section 5.1) are visible in Table 2. We
performed the performance measurements by running cudaHashcat v1.36 on
different systems and measuring the power consumption as the difference be-
tween idle and busy WPA2 computations to get results independent from other
components in the system. The table shows the different GPU configurations
(System) we used for our tests. The pwd/s column shows the performance in
passwords per second and the W column indicates the power consumed by the
GPU during runtime in Watt. The performance per Watt is visible in the pwd/s
W column. In addition to running GPU measurements on our own machines, we
also conducted measurements on dedicated Amazon Elastic Cloud (EC2) GPU
machines as well. While we could measure the performance on the machines
just the same, we were unable to obtain power measurements. Although using
a high number of GPU cloud machines appears promising to achieve high brute
force attack performance, the limiting factor is the cost. Although our combined
experiments on the dedicated Amazon EC2 machines took no longer than an
hour, the costs we accumulated for our tests were already US$ 14.92. Since real-
istic brute force attacks might take considerably longer, the costs for an attacker
would be far lower for acquiring a powerful GPU system instead of using the
Amazon EC2 GPU nodes. In comparison to the results we obtained from our
FPGA implementation, it is visible that GPUs can achieve the performance of a
state-of-the-art low-cost FPGA (i.e., Artix-7), but their power consumption and
performance per Watt is more than 10 times as high. At the same time, the per-
formance achievable with a single larger FPGA such as the Kintex-7 XC7K410T
is no longer in the range of GPUs. Considering high-speed attacks with clusters,
we believe that the scalability for FPGA-based attacks is better due to the small
size of FPGAs, their lower power consumption and the high performance they
can produce.

17

System pwd/s| W|pwd/s W
GeForce GTX750 Ti 52,446| 106 495
GeForce GTX770 OC 62,420 184 339
Amazon EC2 - GRID K520 30,370|N/A N/A
Amazon EC2 - GRID K520 x4|109,073|N/A N/A

Table 2: Performance and Power Results on GPUs

7 Conclusion and Future Work

In this paper, we demonstrated that WPA2 passwords can be attacked at high
speed rates not only by expensive professional FPGA cluster solutions but simi-
lar speeds can be achieved by amateurs on a low budget as well, especially when
considering second hand FPGA boards previously used for cryptocurrently min-
ing. We specifically targeted low-cost FPGA devices, conducted implementations
on 3 different FPGA architectures and evaluated our results with regard to per-
formance and power. Our GPU evaluation suggests that FPGAs can not only
achieve higher speeds at significantly less power, but they can also be used to
easily create small and afforable FPGA clusters in the reach of amateurs. A case
study highlighting the practical impact of our attacks as well as a more detailed
description of our approach is available in the extended version of our paper [9].
However, we believe that besides the speedup we achieved it is more important
to consider that the WPA2-Personal brute force performance achievable on pro-
fessional systems is now becoming feasible on the low-cost systems amateurs can
afford as well. As counter measure, users need to increase the length of their
passwords, the password should be random and it should utilize a large char-
acter set to increase password entropy. In future work, we are looking forward
to evaluate the security of other cryptographic systems as well. In that regard,
we plan to design and implement a powerful low-cost FPGA cluster similar to
COPACOBANA [5] but with low-cost 7-series devices instead.

Acknowledgments

The research was funded by the Austrian Research Funding Agency’s (FFG) KI-
RAS security research program through the (SG)? project under national FFG
grant number 836276, the AnyPLACE project under EU H2020 grant number
646580, and the IT security consulting company Trustworks KG who also pro-
vided the FPGA boards and the cluster.

18

1]

Bibliography

D. Eastlake 3rd and P. Jones: US Secure Hash Algorithm 1 (SHA1). RFC
3174 (Informational) (Sep 2001), updated by RFCs 4634, 6234

D. Eastlake 3rd and T. Hansen: US Secure Hash Algorithms (SHA and
SHA-based HMAC and HKDF). RFC 6234 (Informational) (May 2011)
Elcomsoft: FElcomSoft and Pico Computing Demonstrate World’s
Fastest Password Cracking Solution. https://www.elcomsoft.com/
PR/Pico_120717_en.pdf, [Online; accessed 13-Nov-2015]

Elcomsoft Blog: Accelerating Password Recovery: the Addi-
tion of FPGA. http://blog.elcomsoft.com/2012/07/
accelerating-password-recovery-the-addition-of-fpga
(2012), [Online; accessed 13-Nov-2015]

Gilineysu, T., Kasper, T., Novotny, M., Paar, C., Wienbrandt,
L., Zimmermann, R.: High-Performance Cryptanalysis on RIVYERA
and COPACOBANA Computing Systems. In: Vanderbauwhede, W.,
Benkrid, K. (eds.) High-Performance Computing Using FPGAs, pp.
335-366. Springer New York (2013), http://dx.doi.org/10.1007/
978-1-4614-1791-0_11

IEEE-Inst.: 802.11-2012 - IEEE Standard for Information technology—
Telecommunications and information exchange between systems Local and
metropolitan area networks—Specific requirements Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions. Tech. Rep. IEEE Std 802.11™-2012, IEEE-Inst (2012), http:
//ieeexplore.ieee.org/servlet/opac?punumber=6178209
Johnson, T., Roggow, D., Jones, P., Zambreno, J.: An fpga architecture for
the recovery of wpa/wpa2 keys. Journal of Circuits, Systems, and Comput-
ers (JCSC) 24(7) (2015)

Kaliski, B.: PKCS #b5: Password-Based Cryptography Specification Ver-
sion 2.0. RFC 2898 (Informational) (Sep 2000), http://www.ietf.org/
rfc/rfc2898.txt

Kammerstetter, M., Muellner, M., Burian, D., Kudera, C., Kastner, W.: Ef-
ficient high-speed wpa2 brute force attacks using scalable low-cost fpga clus-
tering (extended version). http://arxiv.org/pdf/1605.07819v1.
pdf, [Online; accessed 25-May-2016]

PicoComputing Inc.: SC5-4U Overview. http://picocomputing.com/
brochures/SC5-4U.pdf, [Online; accessed 13-Nov-2015]

Sorin Visan: WPA /WPA2 Password Security Testing using Graphics Pro-
cessing Units. Journal of Mobile, Embedded and Distributed Systems 5(4)
(2013)

U.S.Department of Commerce National Institute of Standards and Technol-
ogy: FIPS PUB 180-2, Secure Hash Standard (SHS) (2002), U.S.Department
of Commerce/National Institute of Standards and Technology

